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FINITE ELEMENT COMPUTATIONS OF TWO-DIMENSIONAL 
ARTERIAL FLOW IN THE PRESENCE OF A TRANSVERSE 
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SUMMARY 
A finite element solution of the Navier-Stokes equations for steady flow under the magnetic effect through a 
double-branched two-dimensional section of a three-dimensional model of the canine aorta is discussed. The 
numerical scheme involves transforming the physical co-ordinates to a curvilinear boundary-fitted co-ordinate 
system. The shear stress at the wall is calculated for a Reynolds number of 1000 with the branch-to-main aortic 
flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and found 
to be in reasonable qualitative agreement. The steady flow, shear stress and branch flow under the effect of a 
magnetic field have been discussed in detail. 
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INTRODUCTION 

The measurement of shear stress in arterial flow has acquired importance because of the possible 
relation between the shear stress at the wall and the existence of atherosclerosis. 

Flow phenomena is large and medium-sized arteries influence the development of atherosclerosis 
lesions. Atherosclerosis is a degenerative disease caused by the collection of lipids and other materials 
under the endothelial layers lining the arterial wall. These areas of collection are called plaques. The 
greatest possibility for the disease is in the space near bends, junctions and branches of large arteries. 
Fry’ assumed that these plaques represent the tissue response to an increased flux of plasma substances 
across an endothelial surface. 

Application of a magnetic field has been realized as an elegant device for flow control in 
physiological fluid flows. Davis and Ray’ computed the flow in zero-degree bifiucation. Lutz et al.3 
considered a simplified model of a double-branched network that shows the region from the thoracic 
aorta and includes the celaic and mesentric branches (Figure 1). Wei et al.4 and Ehrlich’ have 
considered the problem of obtaining the solution in complex geometries by applying a co-ordinate 
transformation technique. Singh6 studied the hydromagnetic effects on the three-dimensional flow past 
a porous plate. 

Much of the numerical work has been done using the finite element technique in biofluid mechanics. 
Gokhle et al.’ used the finite element method to solve the steady state Navier-Stokes equations in a 
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Figure 1. Aortic model geometry 

two-dimensional section of the geometry considered by Lutz et u I . ~  Mishra and Singh' studied the non- 
linear flow of blood through arteries. Thompson et ~ 1 . ~  considered a numerical technique for 
generating a boundary-fitted co-ordinate system, which was further developed by Anderson et al. lo 

It is well known that the action at a distance of a magnetic field on a fluid has many practical 
applications. Examples are the control of liquid metals in continuous casting processes, plasma 
welding and in blood plasma. The field of MHD is complex since it involves the solution of both the 
Navier-Stokes equations characterizing fluid flow and Maxwell's equations for the magnetic field. In 
most situations, analytic solutions of the coupled sets of equations do not exist. Numerical techniques 
have proved the only means available for addressing realistic physiological problems. 

The purpose of this work is to investigate the fluid mechanics of steady flow for a two-dimensional 
finite element model under the influence of a transverse magnetic field. The fluid is chosen to be 
Newtonian and incompressible and the flow is assumed in the region of the arterial system. Here the 
numerical scheme involves first the transformation of co-ordinates and then the resulting 
transformation parameters are used in the weak formulation of the finite element solution of the 
transformed equations and boundary conditions under the effect of a magnetic field transverse to the 
flow. 

We used the finite element technique to complete the results and the shear stress at the wall is 
calculated for a Reynolds number of 1000. It is found that our results are very close to the exact 
solutions. The numerical results are then compared with the results of Agonafer et al. l 1  The magnetic 
field reduces the flow. 

TRANSFORMATION OF CO-ORDINATES 

The following elliptic equations are used to generate the boundary-fitted co-ordinate system: 

@r @r -+--0, 
ax2 i3J.J 

@? @? 
8x2 i3J.J -+--0. 

These equations constitute a transformation from the physical plane (Figure 2) to a computational 
plane. Since this transformation is governed by the elliptic equations, it is called elliptic grid 
generation, first used on a practical basis by Thompson et ~ 1 . ~  in 1974. 
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Figure 2. Single-branched geometry 

Interchanging dependent and independent variables in equation (l), we have 

a2x a2x a 2 X  

at2 at a? dv2 

a'Y a2Y + y - - 0 ,  a'Y a- - 28- at2 a t a q  a+ 

+ y - - 0 ,  a- - 28- 

where 

a =  (g)2+(g) 2 I 

Here x and y are the independent variables and a, 
parameters. 

and y are the co-ordinate transformation 

GOVERNING FIELD EQUATIONS 

In this analysis the assumptions are that the fluid is incompressible, isothermal and Newtonian and the 
flow is steady and laminar. To achieve the steady state solution, it is easier computationally to retain the 
unsteady state terms and to get the steady state solution asymptotically in time. 

The conservation-of-mass and time-dependent Navier-Stokes equations in primitive variables 
replaced by the vorticity transport equation and the elliptic streamfunction equation in Cartesian 
rectangular co-ordinates are 

( 5 )  
aw a0 aw I a2w 

ax ay Re (8x2 + w) a t+ ' -+"-=-  - 
- 

where M is the magnetic field distribution or Hartmann number. 
The continuity equation can be satisfied by the introduction of the streamfunction Y ,  
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and we have 
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Equations (7) and (8) imply 

Equation (5) can be transformed to the numerical plane (5 ,  q), resulting in 

do Y , ( u o ) ~ - Y ~ u ~ ) ,  xe(vw),-x,(vw)c ( a q r  - 285, + yo , ,  + a o ,  + Z W ~ )  -+ dt - M ,  (10) - - 
J J2 Re + J 

where Re is the Reynold number. We have 

(11) 

(12) 

2 
"@55  - 2B@r, + Y*Cl+ a*, + Y*C = -J 0' 

where 
2 z = -J Q. ~ l = - J p ,  2 

INITIAL CONDITION 

For the initial value vorticity transport equation we require the initial vorticity distribution. Since we 
are not interested in time-dependent solutions, a standard initial streamfunction distribution is 
calculated by solving the potential flow equations. By applying a no-slip condition at the solid wall 
boundaries, the initial vorticity distribution can be defined. 

BOUNDARY CONDITIONS 

Assuming I) =constant, i.e. no mass flux at solid boundaries, the boundary conditions at the wall can 
be derived from equation (1 1) as 

w,all = { -y/J2 along q = constant, 
-a/J2 along [ =  constant, 

- = 0, 
89 
an 

where a@/& is the derivative along the normal. 

to-main aortic flow rate ratio. 

calculated from the knowledge of the vorticity distribution. Thus we have 

The streamhnction Y at the wall is specified from the knowledge of the flow parameter, the branch- 

At inflow (an,) a fully developed flow is assumed. The vorticity and streamfunction are then 

9 = * ( V ) l  0 = w(q).  
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At outflow (an,) the derivative of the velocity component in the x-direction can be assumed to be 
zero. This gives 

w,, = 0, 9,,, = 0 along = constant, 
05 = 0, 9 c c  = 0 along 5 = constant. 

NUMERICAL METHODS 
In equation (6) we consider (an,) as an essential boundary and mb+cl +c2 +c, +c4 + d  as a natural 
boundary. The weak formulation of equation (6) is 

-vw 1 VQ dsz = - wo dsz, f R f R 
where w = $k and @ = @kQk, with @k denoting the shape function associated with k. There is no 
contribution from the natural boundary, since N / d n  = 0 there. On the grid shown in Figure 3, using 
bilinear elements, the vorticity o and streamfunction Y can be determined in the interior of the domain 
and on d n b .  From the RHS of equation (1 3), given values of Y on mcl + c2 +c3 + c4 and md, the nodal 
equations can be obtained and o can be determined on these boundaries. By using a lumped o, 
equation (5) then becomes well-posed. The weak formulation of equation (9) is 

do 
W P  . vo dsz = v w v 2 0  dsz - M ,  J, W d t  ..+IR f R 

where v is the kinematic pressure, w is a weighting function and is the velocity vector. 
After integrating by parts and using lumping, the equation thus obtained is in the form 

M i l  ao. + A p j  = 0, at 

where the index j describes the neighbourhood of node i. The above equation can be integrated with a 
two-stage time- stepping scheme (for second-order accuracy in time): 

Figure 3. Numerically generated curvilinear co-ordinate lines 
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At each time step Y is estimated from equation (13), new values of o on solid boundaries are 
determined and a new velocity field is calculated from equations (7) and (8). This can be processed in a 
finite element was as 

Lumping is essential on the LHS to remove the non-positivity of the system and to make the solution 
explicit. 

The above process can be continued until a steady state is reached. For small values of v, i.e. for 
convection-dominated flow, the steady state corresponding to equation (14) provides oscillating 
solutions called 'wiggles'. 

DISCUSSION OF RESULTS 

The numerical method was first tested by studying the fluid mechanics in a related geometry 
considered by previous investigators. The natural co-ordinate lines generated by transforming the 
physical co-ordinates in Figure 2 are shown in Figure 3. The fluid mechanics problem was solved using 
the FEM. Figures 4(a) and 4(b) show comparisons of the upstream and downstream wall vorticity 
distributions respectively. These comparisons are between the work of Agonafer et al. " and the present 
work. Our results are closer to the experimental results in comaprison with Agonafer et aZ." in the 
downstream region (Figure 4(b)), whereas in the upstream region both results shows good agreement 
with the experimental results apart from small differences. In this investigation the central processing 
time required for the steady state flow was 45s on an IBM PC-AT 386 (INTEL). 

Figure 5 shows the numerically generated curvilinear co-ordinate lines of Figure 1. In the present 
work the flow parameters assumed in the fluid mechanics are the branch-to-main flow rate ratio and the 
Hartmann number M. The calculated ventral shear rates in the celaic branch for three different flow rate 
ratios in the presence of magnetic field (M= 100) are shown in Figure 6 .  Comparison with the shear 
rate in the absence of the magnetic field indicates that the magnetic field is not favourable to the flow. 
In all three cases the curves have same lines with shear rate values at the entrance and exit for fully 
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Figure 4(a). Wall vorticity distribution 
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Figure 4@). Wall vorticity distribution 

developed flow, but, as shown, the shear rate values reach a local maximum at one point and quickly 
drop to zero or negative values before increasing at the exit point. This is also true physically, because 
the shear rate is maximum before bifurcation takes place, while at the bifurcation junction, since the 
stream is divided into two, the shear rate drops suddenly. The same thing happens when the next 
bifurcation takes place. 

Figure 7 shows the experimental shear rates corresponding to Figure 6. The numerical shear rates 
are seen to compare quite well with the experimental results. The main difference between Figures 6 
and 7 is that the numerical calculations, in sharp contrast with the experimental results, exhibit a flow 
separation phenomenon and this becomes significant in the presence of a magnetic field. 

Figure 5 .  Numerically generated curvilinear co-ordinate lines 
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Figure 6 .  Numerical shear rate distribution 

Experimental and numerical velocity vectors are compared in Figures 8 and 9 respectively for a 
branch flow rate of 20 per cent and M =  100. In conclusion, the numerical calculations of steady flow in 
the two-dimension model of the canine aorta in the presence of a magnetic field are quite similar to the 
experimental results. The finite element method provides a good alternative to other methods for 
studying such complex biological flow geometries. The effect of the magnetic field is an efficient 
device for flow control. Other effects such as the pulsatile flow of elastic walls can also be incorporated 
into the basic approach. 

ELEClRODE POSl llON Clll 

Figure 7. Experimental shear rate distribution 
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Figure 8. Numerical steady flow velocity profiles 
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Figure 9. Experimental steady flow velocity profiles. 
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